The Journal of Biological Physics and Chemistry

2017

 

Volume 17, Number 1, pp. 8–32

 

 

 

Glyphosate pathways to modern diseases VI: Prions, amyloidoses and autoimmune neurological diseases

Anthony Samsel1 and Stephanie Seneff2

1Samsel Environmental and Public Health Services, Deerfield, NH 03037, USA
2Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA

Usage of the herbicide glyphosate on core crops in the USA has increased exponentially over the past two decades, in step with the exponential increase in autoimmune diseases including autism, multiple sclerosis, inflammatory bowel disease, type 1 diabetes, coeliac disease, neuromyelitis optica and many others. In this paper we explain how glyphosate, acting as a non-coding amino acid analogue of glycine, could erroneously be integrated with or incorporated into protein synthesis in place of glycine, producing a defective product that resists proteolysis. Whether produced by a microbe or present in a food source, such a peptide could lead to autoimmune disease through molecular mimicry. We discuss similarities in other naturally produced disease-causing amino acid analogues, such as the herbicide glufosinate and the insecticide L-canavanine, and provide multiple examples of glycine-containing short peptides linked to autoimmune disease, particularly with respect to multiple sclerosis. Most disturbing is the presence of glyphosate in many popular vaccines including the measles, mumps and rubella (MMR) vaccine, which we have verified here for the first time. Contamination may come through bovine protein, bovine calf serum, bovine casein, egg protein and/or gelatin. Gelatin sourced from the skin and bones of pigs and cattle given glyphosate-contaminated feed contains the herbicide. Collagen, the principal component of gelatin, contains very high levels of glycine, as do the digestive enzymes: pepsin, trypsin and lipase. The live measles virus could produce glyphosate-containing haemagglutinin, which might induce an autoimmune attack on myelin basic protein, commonly observed in autism. Regulatory agencies urgently need to reconsider the risks associated with the indiscriminate use of glyphosate to control weeds.

Keywords: autism, autoimmune disease, collagen, glycine, glyphosate, multiple sclerosis, protein misfolding, vaccines

 

back to contents